the solar system
Chat with our AI personalities
The protoplanet hypothesis describes the formation of planets from the dust and gas present in the early solar system. It suggests that small planetesimals collided and merged to form larger celestial bodies, eventually leading to the creation of the planets we see today.
An early collision by (proto) Earth with a large protoplanet..
The primary sources of heat for protoplanets during their formation were gravitational collapse, radioactive decay of elements within the planet, and impacts from other celestial bodies. These heat sources contributed to melting the protoplanet's interior and driving geological processes like differentiation and magma ocean formation.
The protoplanet underwent differentiation, where heat caused materials to separate based on their density. The heavy elements sank to the core, while lighter materials floated to the surface, forming layers. This process is important in planetary formation as it leads to the creation of distinct layers within a planet.
The nebular hypothesis is a widely-accepted theory that explains the formation of the solar system. It suggests that the Sun and planets formed from a spinning disk of gas and dust called a solar nebula. As the nebula contracted due to gravity, it flattened into a disk and the Sun formed at the center, while planets and other celestial bodies formed from material in the disk.
The Giant Impact Hypothesis states that the moon formed when a Mars-sized object collided with Earth early in the planet's history. This collision ejected debris into space, which later coalesced to form the moon.