Centripetal force is the force required to keep an object moving in a curved path. When an object is in orbit around a larger body, such as a planet, the centripetal force is provided by the gravitational force between the two objects. This is why the centripetal force in orbital motion is often equal to the gravitational force.
Gravity provides the centripetal force that keeps objects in orbit. It acts as a "pull" towards the center of the orbit, allowing the object to continuously move in a circular or elliptical path around the larger body, such as a planet or star.
An orbit is formed when an object is moving in a curved path around another object due to the gravitational pull between them. The two motions involved in an orbit are the object's forward motion (tangential velocity) and the pull of gravity keeping it in a curved path (centripetal force).
The centripetal force is responsible for pulling objects toward the center of a circle as they move in a curved path. This force acts perpendicular to the velocity of the object, keeping it on a circular trajectory.
In orbit, the force of gravity between the object and the celestial body it is orbiting keeps the object in orbit. This force creates a centripetal acceleration that balances the object's inertia, causing it to stay in a stable orbit.
Centripetal force is the force that keeps an object moving in a circular path. It acts towards the center of the circle and is necessary to maintain the object's trajectory.
No. Centripetal force is a real force that pulls objects towards the center of the circular motion. Centrifugal force is a ficticious force that seems to pull an object towards the outside.
For object to orbit around the Sun, it required gravitation force from mass of the Sun in balance with centripetal force from velocity of the object. If the gravitation force is too strong then the object would pull down to the sun and if the centripetal force is too great then the object would escape from the orbit.
The centripetal force
centripetal
The centripetal force is responsible for providing the centripetal acceleration required to keep an object moving in a circle. As the centripetal force increases, the centripetal acceleration also increases, causing the object to move in a tighter circle. Conversely, a decrease in centripetal force will lead to a decrease in centripetal acceleration, resulting in a wider circle or the object moving off its circular path.
Actually, centripetal force is the inward force that keeps an object moving in a circular path. It is not a force that we apply to the object, but rather a force that is required to maintain the object's circular motion. Examples of centripetal force include tension in a string for a swinging object or friction for a car going around a curve.
Centripetal-Brittany Goraczkowski
centripetal- Dashun Walden
centripetal force
The centripetal force is the force with which the centrifuge pushes some object inwards. The opposite force, of course, is the object pushing the centrifuge outwards.
Centripetal force is the force that acts on an object moving in a circular path, directing it towards the center of the circle. It is responsible for keeping an object in circular motion instead of flying off in a straight line. Mathematically, centripetal force is calculated as the mass of the object times its centripetal acceleration.