Yes.
Yes.
Yes.
Yes.
Chat with our AI personalities
Yes, light can curve due to gravitational pull, a phenomenon predicted by Einstein's theory of general relativity. This effect, known as gravitational lensing, occurs when light from a distant object is bent as it passes near a massive object, such as a galaxy or black hole, resulting in distorted or magnified images.
A planet or moon bends toward the light due to the gravitational force of the sun or star, causing its orbit to curve. This bending of the path of the planet toward the light is what keeps it in orbit around the star.
Global winds curve due to the Coriolis effect, which is caused by the rotation of the Earth. In the Northern Hemisphere, global winds are deflected to the right, while in the Southern Hemisphere, they are deflected to the left. This deflection results in the curved paths of global winds around the Earth.
Objects in the Southern Hemisphere curve to the left due to the Coriolis effect. This is because the Earth's rotation causes a deflection to the left in the Southern Hemisphere. This is the opposite of the deflection in the Northern Hemisphere, where objects curve to the right.
Winds appear to curve due to the Coriolis effect, which is a result of the Earth's rotation. As air moves from high pressure to low pressure, it is deflected to the right in the Northern Hemisphere and to the left in the Southern Hemisphere. This deflection causes winds to curve instead of moving in a straight line.
a burning candle is a light source due to the fire.