Martensite
1) The nonequilibrium martensite does not appear on the diagram; and 2) The diagram provides no indication as to the time-temperature relationships for the formation of pearlite, bainite, and spheroidite, all of which are composed of the equilibrium ferrite and cementite phases.
hardness of martensite is greater than bionite and fine pearlite.
For two reasons: 1. martensite is bct structure which prevent the movement of dislocations. 2. martensite has higher carbon concentraton.
To harden a steel, it is heated to the austenitic region and then quenched to martensite. The rate at which the steel is quenched must be rapid enough to form martensite and not other microstructures (namely bainite, pearlite, or ferrite), which are not as hard. The cooling rate is a function of composition. Adding alloying elements to steel maintains hardenability at slower cooling rates, essentially shifting the TTT diagram. TTT diagram for steel in link below.
Martensite transformation begins when austenite is cooled below a certain critical temperature, called the matrensite start temperature. As we go below the tmartensite start temperature, more and more martensite forms and complete transformation occurs only at a temperature called martensire finish temp. Formation of martensite require that the austenite phase must be cooled rapidly.
There is no root word fec. There is a root word fac-, meaning "make" that may appear as fect- in words such as "effect," or as fec- in "feckless."
FEC Strauss Trunnion Bascule Bridge was created in 1890.
Because Martensite transformation is almost instantaneous, the Martensite has the identical composition of the parent phase. Formation of Martensite involves a transformation from a body-centered cubic structure to body-centered tetragonal structure. The large increase in volume that results creates a highly stressed structure.
Martensite
Carbon Steel - Martensite
M. P. Arbuzov has written: 'Condition of martensite electrolytically isolated from quenched steel' -- subject(s): Steel, Electrolysis, Martensite, Electrometallurgy