It produces an electrical impulse used to restart the hearts' rhythm after a cardiac arrest.
Cardiac Nurse
Potassium has the main direct effect on cardiac impulse transmission and muscle contraction. However, potassium (K+) and sodium (Na) have an inverse relationship; when one is increased the olther is decreased. In cardiac health, both must be balanced to effect homeostasis. This is why repeat electrolyte lab values and cardiac enzymes are so important in unstable cardiac patients.
Cardiac Arrest.
An ECG pattern the P-Q interval indicates how long it takes for the cardiac impulse to travel from the SA node through the AV node.
point of maximum impulse (PMI)
cardiac output is heart rate multiplied by stroke volume,
Potassium maintains proper fluid balance, nerve impulse function, muscle function, and cardiac function.
On the Net, you can find different things being said about the cardiac "junctional fibers". I am going to offer what I understand makes the most sense. The junctional fibers are cardiac muscle cells which are specialized for slowing down the cardiac impulse just before it goes into the atrioventricular node. This delay gives the atria time to empty their blood into the ventricles before the cardiac impulse goes on to stimulate the ventricles to contract. Notes: (1) These junctional fibers are not nerve cells, but are muscle cells which are specialized for conducting the cardiac impulse. You may know how more-narrow nerve axons are slower at passing on an action potential, while wider axons can pass on an action potential faster. Well, these junctional fibers are like nerve fibers, in this way > because these junctional fibers are very narrow, they can slow down the cardiac impulse. (2) So, where do you think these narrow junctional fibers need to be, in order to slow down the cardiac impulse at the right place and time? If the cardiac impulse were to go from the atria right on to to the ventricles, then the ventricles would be stimulated to contract while the atria were still trying to empty blood into the ventricles. And so, the ventricular blood pressure would be pushing back against the blood that was trying to get from the atria into the ventricles. This would not be good. So . . . the heart needs to slow that impulse, just after it leaves the atria . . . slowing it long enough so the ventricles stay relaxed while they receive blood from the atria. (3) And, lo and behold . . . the junctional fibers are located right after the atria; and they receive the impulse which comes from the atrial muscles; then it delays the impulse before letting it go into the atrioventricular node. This slow-down gives the atrial muscles just enough time to finish contracting before the atrioventricular node sends on the cardiac impulse to stimulate the ventricles to contract. (4) You might notice on an EKG how there is the P wave showing atrial depolarization. Then the line goes flat for a little bit before the QRS complex. At the beginning of that flat time at the end of the atrial depolarization, this is where the junctional fibers are slowing down the cardiac impulse before it shows as the QRS which shows the impulse being fired by the atrioventricular node to the ventricles, I understand.
Cardiac muscle cells are linked together by intercalating discs that help to conduct the electrical impulse that makes them all beat together.
lol! i think it is cardiac muscles... well i just studied this in science but im not positive...
The speed of impulse propagation in neurons is typically around 1-100 meters per second, but can vary based on factors such as the type of neuron and the presence of myelin sheath. In cardiac tissue, the speed of impulse propagation is slower, around 0.5 to 1 meter per second.