A and t have to be the same and g and c have to be the same
Chat with our AI personalities
Samples of evidence supporting the base pairing rules include X-ray crystallography studies of DNA structure, experiments showing complementary base pairing in PCR amplification, and genetic studies demonstrating the role of base pairing in maintaining the fidelity of DNA replication.
The wobble rules refer to the flexibility in base pairing between the third base of a codon and the first base of an anticodon during protein synthesis. This flexibility allows for non-standard base pairing, such as G-U pairing, which helps in reducing errors during translation.
The correct base-pairing rules for DNA are adenine (A) pairing with thymine (T), and cytosine (C) pairing with guanine (G). This complementary base pairing allows DNA replication to occur accurately, ensuring genetic information is faithfully transmitted during cell division.
Base Pairing Rules
The base-pairing rules in DNA are that adenine (A) pairs with thymine (T) and cytosine (C) pairs with guanine (G). This complementary base pairing allows for the accurate replication of DNA during cell division.
The wobble base pairing rules refer to the relaxed base pairing at the third position of a codon in mRNA with the corresponding anticodon in tRNA during translation. This flexibility allows for some variation in the pairing, leading to genetic stability by reducing the likelihood of errors in protein synthesis. Additionally, the wobble base pairing rules contribute to genetic diversity by allowing for the incorporation of different amino acids at the same codon position, increasing the potential variety of proteins that can be produced.