Want this question answered?
The ability of a stream to erode and transport material largely depends on its velocity, gradient, and discharge. Streams with higher velocities, steeper gradients, and greater discharge have more erosive power and are better able to transport sediment.
The answer is cobble.
In a muddy stream, sediment transport processes such as erosion, sedimentation, and deposition would likely dominate. The turbulent flow in the stream can cause erosion of sediment from the streambed, leading to the suspension and transport of the sediments downstream. Sediments can also settle out and deposit in areas of slow-moving water or when the flow velocity decreases.
Stream gradient, or the slope of the stream channel, affects stream velocity by influencing the speed at which water flows downstream. A steeper stream gradient typically results in a faster water flow velocity, as the force of gravity pulls water downhill more strongly. Conversely, a gentler stream gradient leads to slower water flow velocity.
Deposition is dominant in areas of a stream where the flow rate decreases, such as at the inner bends of a meander or near the mouth of the stream where it enters a larger body of water. In these locations, the stream has less energy to transport sediment, leading to deposition of the sediment it is carrying.
Pebbles
The stream velocity required to carry the smallest boulders is typically around 1 meter per second. This velocity is based on the sediment transport capacity of the stream, which is influenced by factors such as the size and weight of the boulders, as well as the stream's gradient and flow rate.
The minimum speed needed to transport cobbles into a stream would depend on factors such as the size and weight of the cobbles, the flow rate of the stream, and the slope of the terrain. In general, water velocities of at least 1-2 feet per second are needed to transport cobbles in a stream.
A stream with a velocity of 20 cm/s can transport particles up to fine sand size (0.0625 - 2 mm). Larger particles such as gravel and boulders would require a faster flow velocity to be transported.
The minimum water velocity needed to transport the smallest boulder is determined by the critical threshold velocity. This velocity is influenced by factors such as the size, shape, and weight of the boulder. In general, for very small boulders, velocities in the range of 0.5 to 1.0 meters per second are often sufficient to initiate transport.
Velocity
The ability of a stream to erode and transport material largely depends on its discharge, velocity, gradient, and the size and shape of the sediments. These factors influence how much sediment a stream can carry and how effectively it can erode material from its surroundings.
The ability of a stream to erode and transport material largely depends on its velocity, gradient, and discharge. Streams with higher velocities, steeper gradients, and greater discharge have more erosive power and are better able to transport sediment.
The competence of a stream is determined by the stream's velocity and the size of the sediment it can transport. Streams with higher velocities and larger sediment sizes are typically more competent and can transport larger particles.
Stream erosion can be influenced by factors such as the volume and speed of water flow, gradient of the stream channel, presence of sediment or boulders, vegetation along the banks, and geology of the area. Human activities such as deforestation, urbanization, and construction of dams or levees can also significantly impact stream erosion.
50
The carrying capacity of a stream is influenced by its discharge and velocity. A higher discharge and velocity typically allow a stream to transport larger sediments and materials downstream, increasing its carrying capacity. Conversely, lower discharge and velocity may limit the stream's ability to carry sediment and materials.