The strongest intermolecular force in ammonia is hydrogen bonding. This occurs because the nitrogen atom in ammonia can form a hydrogen bond with a hydrogen atom from another ammonia molecule, resulting in a relatively strong attraction between the molecules.
The predominant intermolecular force in methane is London dispersion forces, in ammonia it is hydrogen bonding, in nitrogen trifluoride it is dipole-dipole interactions.
Yes, acetone and water are miscible, which means they can dissolve in each other in all proportions. This is because both acetone and water are polar molecules with similar intermolecular forces, allowing them to mix together easily.
AlH3 alane is a covalent solid and is a giant molecule, so no intermolecular forces will be present. Planar AlH3 molecules have been isolated at very low temperatures. AlH3 molecules would be predicted to have no dipole moment due to their shape. The only intermolecular forces would be London dispersion forces.
Dipole forces and London forces are present between these molecules.
The intermolecular force in acetone (CH3COCH3) is dipole-dipole interaction. This is because acetone contains a carbonyl group that creates a partial negative charge on the oxygen atom and a partial positive charge on the carbon atom, leading to attraction between different acetone molecules.
Acetone exhibits dipole-dipole interactions and London dispersion forces. The oxygen in the carbonyl group of acetone creates a partial negative dipole, while the carbon and hydrogen atoms exhibit London dispersion forces.
intermolecular force
This is an intermolecular force.
Mixtures of acetone and chloroform exhibit negative deviations from Raoult's law because the molecules of acetone and chloroform have different intermolecular interactions. Acetone forms stronger intermolecular interactions with chloroform than with itself, leading to a decrease in vapor pressure and lower than expected boiling point. This results in the formation of more stable mixed solvent molecules, causing negative deviations from Raoult's law.
Boiling point is a property not a force; but a high boiling point indicate a strong intermolecular force.
Gravity!
Intermolecular attraction
The intermolecular force in Ar (argon) is London dispersion forces, which are the weakest type of intermolecular force. This force is caused by temporary fluctuations in electron distribution around the atom, leading to temporary dipoles.
Intramolecular forces are not intermolecular forces !
The intermolecular force in BF3 is London dispersion forces. This is because BF3 is a nonpolar molecule, so the only intermolecular force it experiences is the temporary weak attraction between temporary dipoles.
Acetone evaporates faster than chloroform and benzene because it has a lower boiling point and higher vapor pressure. This means acetone molecules have more kinetic energy, allowing them to overcome intermolecular forces and escape into the air more readily. Chloroform and benzene have stronger intermolecular forces, requiring more energy to break these bonds and evaporate.