The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the nucleus to the boundary of the surrounding cloud of electrons. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius.
Depending on the definition, the term may apply only to isolated atoms, or also to atoms in condensed matter, covalently bound in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. Under some definitions, the value of the radius may depend on the atom's state and context.[1]
The concept is difficult to define because the electrons do not have definite orbits, or sharply defined ranges. Rather, their positions must be described as probability distributions that taper off gradually as one moves away from the nucleus, without a sharp cutoff. Moreover, in condensed matter and molecules, the electron clouds of the atoms usually overlap to some extent, and some of the electrons may roam over a large region encompassing two or more atoms.
Despite these conceptual difficulties, under most definitions the radii of isolated neutral atoms range between 30 and 300 pm (trillionths of a meter), or between 0.3 and 3 angstroms. Therefore, the radius of an atom is more than 10,000 times the radius of its nucleus (1-10 fm),[2] and less than 1/1000 of the wavelength of visible light (400-700 nm).
The approximate shape of a molecule of ethanol, CH3CH2OH. Each atom is modeled by a sphere with the element's Van der Waals radius.
For many purposes, atoms can be modeled as spheres. This is only a crude approximation, but it can provide quantitative explanations and predictions for many phenomena, such as the density of liquids and solids, the diffusion of fluids through molecular sieves, the arrangement of atoms and ions in crystals, and the size and shape of molecules.[citation needed]
Atomic radii vary in a predictable and explicable manner across the Periodic Table. For instance, the radii generally decrease along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group (column). The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period. These trends of the atomic radii (and of various other chemical and physical properties of the elements) can be explained by the electron shell theory of the atom; they provided important evidence for the development and confirmation of quantum theory.
re...
The atomic radius of iodine is larger than the atomic radius of potassium. This is because as you move down a group in the periodic table, atomic size increases due to the addition of more electron shells. Iodine is located below potassium in the periodic table, hence it has a larger atomic radius.
Silicon has a larger atomic radius than bromine. This is because as you move down a group on the periodic table, atomic radius tends to increase. Bromine is located further to the right on the periodic table and has a smaller atomic radius compared to silicon.
Lead (Pb) has a greater atomic radius than germanium (Ge) because atomic radius generally increases down a group in the periodic table. Lead is located below germanium in the periodic table, so it has more electron shells and a larger atomic radius.
Among bromine, sulfur, chlorine, and selenium, chlorine has the smallest atomic radius. This is because atomic radius decreases as you move from left to right across a period on the periodic table. Chlorine is located on the right side of the periodic table in the 17th group, which indicates smaller atomic radius.
The atomic radius can provide information on the size of an atom. A smaller atomic radius typically indicates a higher nuclear charge or higher number of protons in the nucleus, while a larger atomic radius suggests the presence of more electron shells or electron cloud. Additionally, trends in atomic radius can help predict various properties of elements in the periodic table.
Down a group, the atomic radius increases as the number of shells or energy levels increases.
The atomic radius decreases.
The atomic radius decreases.
Atomic radius decreases horizontally in periodic table. This is due to increase in nuclear charge.
Along a period, nuclear charge increases. hence, atomic radius decreases.
Along a period, nuclear charge increases. hence, atomic radius decreases.
Cesium will have a larger atomic radius than magnesium. This is because atomic radius tends to increase down a group in the periodic table, and cesium is located below magnesium in the periodic table.
The atomic radius of iodine is larger than the atomic radius of potassium. This is because as you move down a group in the periodic table, atomic size increases due to the addition of more electron shells. Iodine is located below potassium in the periodic table, hence it has a larger atomic radius.
atomic radius increases down a group as the number of shells increases
Silicon has a larger atomic radius than bromine. This is because as you move down a group on the periodic table, atomic radius tends to increase. Bromine is located further to the right on the periodic table and has a smaller atomic radius compared to silicon.
The atomic radius of argon is smaller than the atomic radius of krypton. This is because as you move down a group on the periodic table, the atomic radius tends to increase due to the addition of extra electron shells. Argon is located above krypton in the periodic table, so it has a smaller atomic radius.
atomic radius decreases from bottom to top of the periodic table.