0
Anonymous
A vector is characterized by having not only a magnitude, but a direction. If a direction is not relevant, the quantity is called a scalar.
Wiki User
Chat with our AI personalities
No, a scalar quantity cannot be the product of two vector quantities. Scalar quantities have only magnitude, while vector quantities have both magnitude and direction. When two vectors are multiplied, the result is a vector, not a scalar.
Scalar quantities - quantities that only include magnitude Vector quantities - quantities with both magnitude and direction
Scalar and vector quantities are both used in physics to describe properties of objects. They both have magnitude, which represents the size or amount of the quantity. However, the key difference is that vector quantities also have direction associated with them, while scalar quantities do not.
Scalar quantities are defined as quantities that have only a mganitude. Vector quantities have magnitude and direction. Some example of this include Scalar Vector Mass Weight length Displacement Speed Velocity Energy Acceleration
Vector quantities have both magnitude and direction, such as velocity and force. Scalar quantities have only magnitude and no specific direction, such as speed and temperature.
No, a vector quantity and a scalar quantity are different. A vector has both magnitude and direction, while a scalar has only magnitude. Velocity and force are examples of vector quantities, while speed and temperature are examples of scalar quantities.
No. Force and acceleration are vector quantities.
Scalar and vector quantities are both used to describe physical quantities in physics. The key similarity between them is that they both involve numerical values. However, vector quantities also have a direction associated with them, while scalar quantities do not.
Scalar forces have only magnitude, such as pressure and temperature. Vector forces have both magnitude and direction, such as force and velocity. Scalars are represented by single values, while vectors are represented by quantities with both magnitude and direction.
Work and energy are scalar quantities because they have magnitude but no direction. They are described by a single numerical value rather than having both magnitude and direction like vector quantities.
scalar quantities have magnitude only while vector quantities have both magnitude and direction. e.g.s of scalar quantities- distance, mass, temperature, speed e.g.s of vector quantities-displacement, velocity, acceleration, weight, force
Scalar quantities are physical quantities that are described by their magnitude only, with no direction, such as temperature or speed. Vector quantities are physical quantities that are described by both magnitude and direction, such as velocity or force. An example of how they are alike is that both scalar and vector quantities can be added or subtracted using mathematical operations. An example of how they are different is that vector quantities have direction associated with them, while scalar quantities do not.