According to Newton's second law Force is equivalent to mass times acceleration.
ma=F (mass)(acceleration)=Force
Force = (mass) times (acceleration) Constant force produces constant acceleration.
Force = Mass x Acceleration
Force=mass*acceleration
force = mass x acceleration F = M x A
force = mass x acceleration F = M x A
The mass of an object affects how it responds to an applied force. A larger mass requires a larger force to achieve the same acceleration as an object with a smaller mass. In other words, the acceleration of an object is inversely proportional to its mass when a constant force is applied.
Newton's Second Law: force = mass x acceleration
Force equals mass times acceleration, according to Newton's second law of motion. This means that the acceleration of an object is directly proportional to the force applied to it, and inversely proportional to its mass. In simpler terms, the larger the force applied to an object, the greater its acceleration, while the greater the mass of the object, the smaller its acceleration for the same force.
In Newton's second law of motion, force, mass, and acceleration are related. The law states that the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. Mathematically, the relationship is expressed as F = ma, where F is the force, m is the mass, and a is the acceleration.
The relationship is:force = mass x acceleration
For a given mass, the acceleration is directly proportional to the net force acting on the mass, and is in the same direction as the net force. In other words, the larger the net force acting on an object, the greater its acceleration. When the net force is zero, the object is either at rest or moving with a constant velocity.