answersLogoWhite

0


Best Answer

Kerosene, LPG, Wood, and many other fuels

User Avatar

Wiki User

12y ago
This answer is:
User Avatar
More answers
User Avatar

Ann Egege

Lvl 2
10mo ago

Furnace in the home

This answer is:
User Avatar

User Avatar

Anonymous

Lvl 1
4y ago

rt4v5ftey 45 yr5ye5

This answer is:
User Avatar

User Avatar

Anonymous

Lvl 1
4y ago

Water heater

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Home appliances that convert chemical to heat energy?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemical Engineering

What are the causes of chemical poisoning?

The causes of chemical poisoning, are breathing, ingesting, or being exposed to different types of chemical substances. Exposure can occur at a workplace, home or any area where there are toxic chemicals. Chemicals that can be toxic are ammonia, chlorine and arsenic.


Where to find duco cement?

Does walmart, lowes, home dopot carry duco cement


What is normal pressure LPG to bldg?

Natural gas is one of the world's favorite fuels, but-in its usual piped form-you can't use it just anywhere. You can't pipe gas into a car to power the engine or take it with you when you go hiking in the mountains. Nor can you can run a gas pipe out to a boat in the middle of the ocean. And if you live somewhere reasonably rural, you probably can't even have gas at home. But there's a very simple way to enjoy the benefits of gas even when normal piped supplies are out of reach: you can convert to LPG (liquefied petroleum gas)-a really convenient, super-pressurized gas stored in liquid form in a tank, canister, or bottle. Let's find out more about how it works!


What is absorber tube?

Design of Solar energy collectors with the object of capturing in a fluid, the thermal energy component of solar energy, such that the fluid serves as a transport-carrier of the energy for use in application-specific purposes can be particularly significant in that it can be readily deployed in numerous applications. In particular, the design of a collector based on known and off-the-shelf items therefore should have immediate impact and should be a viable task. In this context then a synopsized specification for a Solar Thermal Energy Collector at a minimum should consist of a solar thermal energy absorber made of borosilicate glass tubes design-integrated into a monolith device within a Solar energy concentrator and should include the use of air, water or glycol as the heat absorber or carrier, which flows through the integrated absorber tubes. The fluid flows through the tubes at some predefined rate set in a controller that pumps it as the temperature is attained. The selection of the borosilicate tubes stems from the properties of this type of glass: The emissivity of the material is very low and therefore the heat absorbed will not be re-irradiated away, The thermal stability of the glass is very high and as such it does not suffer thermal shock due to high temperatures, The linear expansion of the glass is also very low hence accommodation of thermal expansion is not quite critical. The Solar Thermal Energy Absorber essentially defines the overall configuration dimensions of the collector even if iteratively and starts off the design: First, the length of the absorber tubes is evaluated, and then specified, by heat transfer analysis that determines the exit temperature of the fluid as a function of the length together with the other flow characteristics, based on the insolation of the geographical region of the intended-deployment of the collector. This evaluation must accommodate for the quantity of heat absorbed by the complementary Solar Energy Concentrator, as perfect thermal reflectivity may not be attainable under practical operating conditions. Moreover, because the overall efficiency of heat transfer into the fluid may be impacted by the absorber configuration, the length may be subjected to some adjustments based on judicious engineering judgment call. Of significant note however, is that the performance of the tube with respect to the amount of the radiant thermal energy that gets transmitted through the wall into the fluid depends on the material from which the tube is manufactured, hence the glass of which properties were used in the calculation must be used in the design. Based the length the rest of the absorber design then takes off: The absorber tube manufactured as a double-walled tube with vacuumed annular in-between glass space, and sealed at both ends. The annular space vacuum is further maintained with getters of such quantity determined to operate the solar collector for a design-specified length of time. The vacuum ensures that the radiant thermal energy passes through the double-wall of the tubes but the heat that obtains from the absorption of the radiant thermal energy is neither convected or conducted out of the absorber. In particular the borosilicate tubes are bundle-designed into a form a circular row embedded into a structure that allows for the fluids to flow into the tubes from the bottom through and out at the top. Further, the configuration is such that the absorber is provided with a mount enabled with a flange, and of a length that allows the positioning of the absorber tubes within the concentrator it would be assembled into The Solar Thermal Energy Concentrator for this collector-design consideration, is of the hemispherical concentrator-design that concentrates the energy over an axial linear region. In particular, the length of the linear region is of the same length of the absorber tubes available for thermal energy absorption. Moreover, the solar energy reflector should also be a thermal mirror, such that solar thermal energy component is reflected primarily. In effect, the efficiency of the mirror is based on its reflectivity of the thermal energy component instead of the optical energy component because the thermal mirror is used with very little regard for the optical component: Whether the choice is made to absorb the optical component, as well by the absorber, or not is entire optional. Based on the reflectivity of the mirror, the support base is designed to enable the removal of heat absorbed by the mirror, such that the performance of the mirror is restricted to a very narrow range of temperature variation, in order to support precision of performance. The heat removal design, however, if required may be designed to use as coolant the same fluid as intended for use in the absorber, both for efficiency and for the simplification of operation needs. Further, the depth of the concentrator is by design evaluated as to prevent any form of interference from occurring as the incidence radiation travel path intersect reflected radiation travel path. Affixed to the support base of the mirror layer is a mount-contraption for mounting the absorber. Design integration of Concentrator and Absorber entails several tasks. The first of the tasks is to have the bundled integrated absorber affixed along the axis of the hemispherical axial-linear concentrator. The base flanges are affixed to the absorber support mount of the concentrator support base structure. Of course, the support mount is constructed such that the absorber evacuated tube sections of the absorber situates within the range of the linear focus of the concentrator such that the solar thermal energy as concentrated falls right on the integrated absorber tubes. The fluid inlet of the absorber is interfaced and connected to the outlets of the concentrator cooling fluids in the case of the operation in which the same type and form of fluid is being used for both the mirror cooling and the thermal heat absorption in the absorber. In the case where different fluids are to be used then the outlets of the concentrator coolants are connected to the recirculation lines for conditioning and recirculation, while the absorber inlet line is connected to the corresponding recirculation line. In both cases the absorber fluid outlet is connected to the corresponding feed line of the recirculation line. Under proper connection, the fluid should flow into the absorber through the inlet and out through the outlet, and be available for the application-specification use and then be fed into the absorber in continuous circulating flow. The modularity of the design supports scalability, allowing for the integration of several collector modules to provide scaled heat supply needs, as in industries. Further, although use-specific form of the absorber has been used in this concept-driven design, use of evacuated thermal tubes with heat-pipes can be just as effective, though the specifics of the configuration of the integrated-bundling of the heat-pipe absorber will depend on the particular type of heat pipe used in the absorber module. An application of this technology of note is the use of the technology for application at homes. Solar Energy is noted as a good source of energy for priming theportable bioenergy technologies for homes. The use of pure water or glycol enables the adoption of the technology in just about every house backyard with too much intrusion. Hence, the collector is effective for the use in homes by home owners towards different objectives. Obvious the collector of the configuration as proffered based on readily available off-the-shelf products can be effective in addressing energy adoption issues of interest.


What causes the ammonia smell from a central home ac unit?

if you have the ac on to long it starts to stink cause the filter picks up the smell and the smell spreads i suggest you get it cleaned

Related questions

What appliances in your home transform electricity into motion?

Some examples of appliances in your home that transform electricity into motion include electric fans, vacuum cleaners, and blenders. These appliances use electric motors to convert electrical energy into mechanical motion.


What energy do appliances such as toasters and irons use?

All home kitchen appliances use electrical energy.


How mechanical energy is used in your home?

running for appliances


Which energy does not save energy in your home?

turning all appliances to stand by when not in use


What are 3 examples of chemical energy at home?

Batteries in devices such as remote controls or laptops store chemical energy which is converted to electrical energy to power the device. Gasoline used in stoves or generators contains chemical energy that is converted to heat energy for cooking or generating electricity. Food in the kitchen contains chemical energy that our bodies extract and convert into mechanical energy for movement and various bodily functions.


What type energy do you use the most at home?

Electrical energy is used in most home appliances. However, you can't say it is used any more than kinetic energy, which you and all other objects use to move. Also, glucose in your body is chemical energy, which is also used. Potential energy would be the most used, if it counts, because every object that is not on the floor contains potential energy (it can fall and therefore the potential energy can be transferred into kinetic energy). Sound and light and thermal energy is also used a lot at home.


What are two uses of energy in your home can be traced back to the sun?

Two uses of energy in a home that can be traced back to the sun are solar panels, which convert sunlight into electricity for powering appliances, and passive solar heating, where sunlight is used to naturally heat the interior of a home through windows or other design features.


Where can I buy energy efficient appliances?

Energy effeicient appliances can be bought at Lowe's Home Improvement Store. They can also be bought only through the Tractor Supply Store's website.


Name two practical ways in which people can conserve energy?

Turn off lights, electronics, and appliances when not in use to reduce energy consumption. Use energy-efficient appliances and light bulbs to lower energy usage in the home.


How can an electric motor keep a home war?

An electric motor cannot directly keep a home warm. However, an electric motor can be used in appliances like electric heaters or heat pumps to generate heat that can help warm a home. These devices convert electrical energy into heat energy to warm up the indoor space.


What are the benefits of owning energy efficient appliances?

Energy efficient appliances, as the name implies, are more efficient than other models. Using energy efficient appliances in your home can save you money by cutting your electricity consumption and therefore having a lower bill. Also, energy efficient appliances may be eligible as a tax credit on your federal income tax.


What happens when solar panels store energy?

The energy is converted into electricity to power your home or any appliances needed in voltage