#include<iostream>
#include<vector>
#include<exception>
#include<assert.h>
#include<time.h>
class matrix
{
private:
size_t m_rows;
size_t m_cols;
std::vector<std::vector<int>> m_data;
public:
matrix (const size_t rows, const size_t cols);
size_t rows() const { return m_rows; }
size_t cols() const { return m_cols; }
std::vector<int>& operator[] (const size_t index) { return m_data[index]; }
const std::vector<int>& operator[] (const size_t index) const { return m_data[index]; }
std::vector<int>& row (const size_t index) { return m_data[index]; }
const std::vector<int>& row (const size_t index) const { return m_data[index]; }
std::vector<int> col (const size_t index);
const std::vector<int> col (const size_t index) const;
void randomise();
};
void matrix::randomise()
{
for (size_t r=0; r<rows(); ++r)
{
for (size_t c=0; c<cols(); ++c)
{
row(r)[c] = rand() % 9 + 1;
}
}
}
std::ostream& operator<< (std::ostream& os, const matrix& m)
{
for (size_t row=0; row<m.rows(); ++row)
{
for (size_t col=0; col<m.cols(); ++col)
{
os << m[row][col] << '\t';
}
os << std::endl;
}
os << std::endl;
return os;
}
matrix::matrix (const size_t rows, const size_t cols)
: m_rows (rows)
, m_cols (cols)
, m_data ()
{
if (!m_cols !m_rows)
throw std::out_of_range ("matrix: dimensions must be non-zero!");
for (size_t row=0; row<m_rows; ++row)
m_data.push_back (std::vector<int>(m_cols));
}
std::vector<int> matrix::col (const size_t index)
{
std::vector<int> column(m_rows);
for (size_t r=0; r<m_rows; ++r)
column[r] = row(r)[index];
return column;
}
const std::vector<int> matrix::col (const size_t index) const
{
std::vector<int> column(m_rows);
for (size_t r=0; r<m_rows; ++r)
column[r] = row(r)[index];
return column;
}
matrix operator* (const matrix a, const matrix b)
{
if (a.cols() != b.rows())
throw std::out_of_range("matrix operator* : row/column mismatch!");
matrix result (a.rows(), b.cols());
for (size_t r=0; r<a.rows(); ++r)
{
for (size_t c=0; c<b.cols(); ++c)
{
result[r][c]=0;
const std::vector<int>& Row = a[r];
const std::vector<int> Col = b.col(c);
assert (Row.size() == Col.size());
for (size_t index=0; index<Row.size(); ++index)
result[r][c] += (Row[index]*Col[index]);
}
}
return result;
}
int main()
{
srand((unsigned)time(nullptr));
matrix a (3,4);
a.randomise();
std::cout << "Matrix A:\n\n" << a << std::endl;
matrix b (4,5);
b.randomise();
std::cout << "Matrix B:\n\n" << b << std::endl;
std::cout << "Matrix A * B:\n\n" << a * b << std::endl;
}
C Examples on Matrix OperationsA matrix is a rectangular array of numbers or symbols arranged in rows and columns. The following section contains a list of C programs which perform the operations of Addition, Subtraction and Multiplication on the 2 matrices. The section also deals with evaluating the transpose of a given matrix. The transpose of a matrix is the interchange of rows and columns.The section also has programs on finding the trace of 2 matrices, calculating the sum and difference of two matrices. It also has a C program which is used to perform multiplication of a matrix using recursion.C Program to Calculate the Addition or Subtraction & Trace of 2 MatricesC Program to Find the Transpose of a given MatrixC Program to Compute the Product of Two MatricesC Program to Calculate the Sum & Difference of the MatricesC Program to Perform Matrix Multiplication using Recursion
write a program that reads a phrase and prints the number of lowercase latters in it using a function for counting? in C program
This is not a question.
A Hadamard Matrix is a square matrix composed of 1 or -1. Using a square matrix system the hadamard matrix could be created
Here is an example program: class obj{ public: float p,n,r,si; friend void calc( obj temp); }; void calc( obj temp){ si = (p*n*r)/100; } The initialization and function calling is essential.
#include<
Multiply it by the identity matrix.
To write a C program to find the adjoint of a matrix, first, you need to create a function to calculate the cofactor of each element in the matrix. Then, construct the adjoint by transposing the cofactor matrix. The program should read the matrix size and elements from user input, compute the cofactors using nested loops, and finally display the adjoint matrix by transposing the cofactor matrix. Make sure to handle memory allocation for dynamic matrices if needed.
for(int i=0;i
Mathematica can be used to compute and normalize eigenvectors of a given matrix by using the Eigensystem function to find the eigenvectors and eigenvalues of the matrix. Then, the Normalize function can be applied to normalize the eigenvectors.
Poor boy
using function we can call the function in the program any where. by using functions we can reduce the code redundancy
Did you know that memory allocation is not needed to display the matrix? However, the C program is to find the sum of all the elements.
i cant write
http://www.assignmentsclub.com/
printf("%s",per>50?:"pass",per<50?:"fail");
To calculate eigenvalues and eigenvectors in MATLAB using the 'eig' function, the syntax is as follows: eigenvectors, eigenvalues eig(matrix) This command will return the eigenvectors and eigenvalues of the input matrix in a specific order.