In mathematics, the binomial theorem is an important formula giving the expansion of powers of sums. Its simplest version reads (x+y)^n=\sum_{k=0}^n{n \choose k}x^ky^{n-k}\quad\quad\quad(1) whenever n is any non-negative integer, the numbers {n \choose k}=\frac{n!}{k!(n-k)!} are the binomial coefficients, and n! denotes the factorial of n. This formula, and the triangular arrangement of the binomial coefficients, are often attributed to Blaise Pascal who described them in the 17th century. It was, however, known to Chinese mathematician Yang Hui in the 13th century. For example, here are the cases n = 2, n = 3 and n = 4: (x + y)^2 = x^2 + 2xy + y^2\, (x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\, (x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4.\, Formula (1) is valid for all real or complex numbers x and y, and more generally for any elements x and y of a semiring as long as xy = yx.
1 answer
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
3 answers
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2 answers
152
1 answer
10 x 10=100. Would you rather go like this: 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1=100?
12 answers
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10
1 1 1 1 1 1 1 1 1 1 5 5 5
1 1 1 1 1 1 1 1 1 1 5 10
1 1 1 1 1 5 5 5 5
1 1 1 1 1 5 5 10
1 1 1 1 1 10 10
5 5 5 5 5
5 5 5 10
5 10 10
12 ways
2 answers
1+1+1+1+1+1+1+1+1+1+1+1+1=13 3 divided by 10 = 30
3 answers
I assume by "square numbers" you mean perfect squares.
You didn't say how many of each were allowed:
1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1²= 23
1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 2² = 23
1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 2² + 2² = 23
1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 3² = 23
1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 2² + 2² + 2² = 23
1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 1² + 2² + 3² = 23
1² + 1² + 1² + 1² + 1² + 1² + 1² + 2² + 2² + 2² + 2² = 23
1² + 1² + 1² + 1² + 1² + 1² + 1² + 4² = 23
1² + 1² + 1² + 1² + 1² + 3² + 3² = 23
1² + 1² + 1² + 2² + 2² + 2² + 2² + 2²= 23
1² + 1² + 1² + 2² + 4² = 23
1 answer
1+1+1+1+1+1+1+1+1+-1+1+1+10
1+1+1+1+1+1+1+1+1=9
1+1+1+1+1+1+1+1+1+-1=8
1+1+1+1+1+1+1+1+1+-1+1+1+10=20
1 answer
1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1
and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1
and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1
and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1 and 1
and 1 and 1 and 1 and 1 and 1 and 1.
Or
1.1 and 1.1 and 1.1 and 42.7
or an infinite number of other possibilities.
2 answers
(-1)3 = (-1)(-1)(-1) = -1
(-1)3 = (-1)(-1)(-1) = -1
(-1)3 = (-1)(-1)(-1) = -1
(-1)3 = (-1)(-1)(-1) = -1
3 answers
11111 x 11111 = 123454321
1 1 1 1 1
x 1 1 1 1 1
_______________
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
+ 1 1 1 1 1
_______________
1 2 3 4 5 4 3 2 1
1 answer
[Legend: Each number represents the denomination (amount) of the coin.]
1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 = 25
1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+5 = 25
1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+5+5 = 25
1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+10 = 25
1+1+1+1+1+1+1+1+1+1+5+5+5 = 25
1+1+1+1+1+5+5+10 = 25
1+1+1+1+1+5+5+5+5 = 25
1+1+1+1+1+10+10 = 25
5+5+5+5+5 = 25
5+5+5+10 = 25
5+10+10 = 25
So the answer is 11!!!
I think you're missing 1+1+1+1+1+1+1+1+1+1+5+10 = 25 ?
1 answer
1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 is one example.
1 answer
The answer is -1.
(1 + 1 x 1)/(1 - 1 x 1 -1) + 1 =
Follow the order of operations: parentheses/brackets, exponents, multiplication and division from left to right, and addition and subtraction from left to right.
Numerator:
Simplify 1 x 1 to 1.
(1 + 1)/(1 - 1 x 1 -1) + 1
Simplify 1 + 1 to 2.
2/(1 - 1 x 1 - 1) + 1
Denominator:
Simplify 1 x 1 to 1.
2/(1 - 1 - 1) + 1
Simplify 1 - 1 - 1 to -1.
2/(-1) +1
Simplify 2/(-1) to -2.
-2 +1
Simplify.
-1
4 answers
There are infinitely many possible solutions. One of them is
1 + 1 + 1 + 1 + 1 + 1 +1 + 1 + 1 + 1 +
1 + 1 + 1 + 1 + 1 + 1 +1 + 1 + 1 + 1 +
1 + 1 + 1 + 1 + 12
1 answer
They are -1 and +1.
They are -1 and +1.
They are -1 and +1.
They are -1 and +1.
2 answers
1 quarter, 2 dimes, 2 nickels, and 45 pennies
1+2+2+45=50
25+10+10+5+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1=100
1 answer
1 quarter, 2 dimes, 2 nickels, and 45 pennies.
1+2+2+45=50
25+10+10+5+5+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
1 answer
The reciprocal of 1 is 1.
Proof:
a. 1*(1/1) = 1 because a*(1/a) = 1
b. 1*1 =1 because 1*a = a
c. 1/1 = 1 compare a. and b.
7 answers
There are infinitely many possible answers.
One such is 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+16
1 answer
There are no two numbers that multiply to get 6 but add to get 18. In fact, the solutions are:
1 answer
1
1 answer
There are infinitely many possible answers:
One possible answer:
-1 and - 1 and - 1 and - 1 and - 1 and - 1 and - 1 and - 1
that is (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1)
1 answer
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 - 1 + 1 + 1 + 1 + 1 + 1 x 0
= (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) + (1 - 1) + (1 + 1 + 1 + 1) + (1 x 0)
= 9 + 0 + 4 + 0
= 13
It depends on if the entire equation is being multiplied by 0 or just the last plus 1. If it is just the last plus 1 then the answer is 13 like shown above. If the entire problem is being multiplied by 0 then the answer is 0.
1 answer
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 11 - 9,999,999 = - 9,999,978
1 answer
you take 1 of the 1s and put it in the tenths place. Then you add the 1+1+1+1+1 and put the answer(5) in the ones place! that is how you get 15 out of 1 1 1 1 1 1.
1 answer
1+1+1+1+254
1+1+1+2+253
1+1+1+3+252
1+1+1+4+251
and
1*1*1*1*258
1 answer
Inelegant solution.
Maximum effort.
100-1-1-1-1-1-1-1=
99-1-1-1-1-1-1=
98-1-1-1-1-1=
97-1-1-1-1=
96-1-1-1=
95-1-1
94-1=
93
..... ..... ..... ..... ..... ..... ..... .....
Elegant solution.
Minimum effort.
100-1-1-1-1-1-1-1=
100-7=
93
2 answers